说明
政府在某山区修建了一条道路,恰好穿越总共m个村庄的每个村庄一次,没有回路或交叉,任意两个村庄只能通过这条路来往。已知任意两个相邻的村庄之间的距离为di(为正整数),其中,0<i<m。为了提高山区的文化素质,政府又决定从m个村中选择n个村建小学(设0<n≤m<500)。请根据给定的m、n以及所有相邻村庄的距离,选择在哪些村庄建小学,才使得所有村到最近小学的距离总和最小,计算最小值。
输入格式
第1行为m和n,其间用空格间隔
第2行为m−1个整数,依次表示从一端到另一端的相邻村庄的距离,整数之间以空格间隔。
例如:
10 3
2 4 6 5 2 4 3 1 3
表示在10个村庄建3所学校。第1个村庄与第2个村庄距离为2,第2个村庄与第3个村庄距离为4,第3个村庄与第4个村庄距离为6,...,第9个村庄到第10个村庄的距离为3。
输出格式
各村庄到最近学校的距离之和的最小值。
样例
10 2
3 1 3 1 1 1 1 1 3
18
提示
<img src=http://ccfoj.com:443/admin/../''/>